The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen)
we summarise a considerable body of literature to the effect that a great many diseases involve (or are accompanied by) both an increased tendency for blood to clot (hypercoagulability) and the resistance of the clots so formed (hypofibrinolysis) to the typical, ‘healthy’ or physiological lysis. We concentrate here on the terminal stages of fibrin formation from fibrinogen, as catalysed by thrombin. Hypercoagulability goes hand in hand with inflammation, and is strongly influenced by the fibrinogen concentration (and vice versa); this can be mediated via interleukin-6. Poorly liganded iron is a significant feature of inflammatory diseases, and hypofibrinolysis may change as a result of changes in the structure and morphology of the clot, which may be mimicked in vitro, and may be caused in vivo, by the presence of unliganded iron interacting with fibrin(ogen) during clot formation. Many of these phenomena are probably caused by electrostatic changes in the iron–fibrinogen system, though hydroxyl radical (OH˙) formation can also contribute under both acute and (more especially) chronic conditions. Many substances are known to affect the nature of fibrin polymerised from fibrinogen, such that this might be seen as a kind of bellwether for human or plasma health.Hypercoagulability is strongly linked with aging, and it appears that iron plays a role here. For instance, ischemic stroke is characterized by blood clots in the brain, and iron plays a role.
Stroke is associated with the intracerebral formation of fibrin clots which may lead to irreversible brain damage. Thrombolytic therapies employ a variety of natural and/or recombinant plasminogen activators to initiate fibrinolytic degradation of cerebral thrombi. However, such therapies when installed beyond 4- to 6-h window, may fail to achieve the expected outcome. This is due to the hydroxyl radical-induced modification of fibrin(ogen) molecules rendering them refractory to fibrinolytic degradation, but no cause of the increased free radical generation in stroke was offered. Here, we show by means of electron microscopy that iron ions added to human blood dramatically enhances fibrin fibers formation with thrombin, and significantly delays fibrinolysis during spontaneous clotting of native blood. Iron ions caused the appearance dense matted fibrin deposits, similar, if not identical, to those observed in plasma of patients with stroke. These results may explain a known relationship between thrombotic diseases and the increased body concentrations of free iron and/or hemoglobin derivatives. We conclude that any action resulting in the inhibition of hemostatic abnormalities, as well as in the reduction of body free iron and scavenging of hydroxyl radicals (e.g., by polyphenols) can potentially prevent pathological reactions associated with consequences of stroke.
Iron modifies fibrinogen with hydroxyl radicals, making it more difficult to lyse.
So all this is evidence that iron is involved in hypercoagulability that increases with age.
No comments:
Post a Comment