Friday, January 29, 2016

Adipocyte iron regulates adiponectin and insulin sensitivity

Adipocyte iron regulates adiponectin and insulin sensitivity


Iron overload is associated with increased diabetes risk. We therefore investigated the effect of iron on adiponectin, an insulin-sensitizing adipokine that is decreased in diabetic patients. In humans, normal-range serum ferritin levels were inversely associated with adiponectin, independent of inflammation. Ferritin was increased and adiponectin was decreased in type 2 diabetic and in obese diabetic subjects compared with those in equally obese individuals without metabolic syndrome. Mice fed a high-iron diet and cultured adipocytes treated with iron exhibited decreased adiponectin mRNA and protein. We found that iron negatively regulated adiponectin transcription via FOXO1-mediated repression. Further, loss of the adipocyte iron export channel, ferroportin, in mice resulted in adipocyte iron loading, decreased adiponectin, and insulin resistance. Conversely, organismal iron overload and increased adipocyte ferroportin expression because of hemochromatosis are associated with decreased adipocyte iron, increased adiponectin, improved glucose tolerance, and increased insulin sensitivity. Phlebotomy of humans with impaired glucose tolerance and ferritin values in the highest quartile of normal increased adiponectin and improved glucose tolerance. These findings demonstrate a causal role for iron as a risk factor for metabolic syndrome and a role for adipocytes in modulating metabolism through adiponectin in response to iron stores.
Excess iron could be the driver of the obesity epidemic, and lowering iron could conceivably help weight loss.

Thursday, January 28, 2016

Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats.

OBJECTIVE:

Carbon tetrachloride (CCl4) is a lipid-soluble potent hepatotoxic; thus, it widely is used as an animal model of severe hepatic failure. Treatment with antioxidants may modulate the toxic effects of CCl4 on liver, generally with drug administration before CCl4, which can restrict its use in the clinical setting. We here describe the effects of N-acetylcysteine, deferoxamine, or both in the treatment of CCl4-induced hepatic failure.

DESIGN:

Prospective, randomized, controlled experiment.

SETTING:

Animal basic science laboratory.

SUBJECTS:

Male Wistar rats, weighing 200-250 g.

INTERVENTIONS:

Rats exposed to CCl4 were treated with N-acetylcysteine and/or deferoxamine or vehicle.

MEASUREMENTS AND MAIN RESULTS:

N-acetylcysteine plus deferoxamine treatment significantly attenuated hepatic and central nervous system oxidative damage after acute hepatic failure induced by CCl4. In addition, the serum levels of alanine aminotransferase, total bilirubin, and prothrombin time in the N-acetylcysteine plus deferoxamine group were significantly lower than those in the N-acetylcysteine or deferoxamine and saline groups. After N-acetylcysteine plus deferoxamine treatment, hepatocellular necrosis and inflammatory infiltration induced by carbon tetrachloride were greatly decreased. Survival in untreated rats was 5%. Survival increased to 25% and 35%, respectively, with N-acetylcysteine and deferoxamine treatment. In rats treated with N-acetylcysteine plus deferoxamine, survival was 80%.

CONCLUSIONS:

Our data provide the first experimental demonstration that N-acetylcysteine plus deferoxamine reduces mortality rate, decreases oxidative stress, and limits inflammatory infiltration and hepatocyte necrosis induced by CCl4 in the rat.

Iron chelator plus NAC and no more liver disease.

Anti-ageing and rejuvenating effects of quercetin

Homeostasis is a key feature of the cellular lifespan. Its maintenance influences the rate of ageing and it is determined by several factors, including efficient proteolysis. The proteasome is the major cellular proteolytic machinery responsible for the degradation of both normal and damaged proteins. Alterations of proteasome function have been recorded in various biological phenomena including ageing and replicative senescence. Proteasome activities and function are decreased upon replicative senescence, whereas proteasome activation confers enhanced survival against oxidative stress, lifespan extension and maintenance of the young morphology for longer in human primary fibroblasts. Several natural compounds possess anti-ageing/anti-oxidant properties. In this study, we have identified quercetin (QUER) and its derivative, namely quercetin caprylate (QU-CAP) as a proteasome activator with antioxidant properties that consequently influence cellular lifespan, survival and viability of HFL-1 primary human fibroblasts. Moreover, when these compounds are supplemented to already senescent fibroblasts, a rejuvenating effect is observed. Finally, we show that these compounds promote physiological alterations when applied to cells (i.e. whitening effect). In summary, these data demonstrate the existence of naturally occurring anti-ageing products that can be effectively used through topical application.

https://hal.archives-ouvertes.fr/hal-00625941/document

Quercetin chelates iron.

Minocycline Attenuates Iron-Induced Brain Injury

Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5–6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p < 0.05). The co-injection of minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p < 0.01). Albumin, a marker of BBB disruption, was measured by Western blot analysis. Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p < 0.01). Iron-handling protein levels in the brain, including ceruloplasmin and transferrin, were reduced in the minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

http://link.springer.com/chapter/10.1007/978-3-319-18497-5_62